Ferdowsi University of Mashhad, Academic Homepage of ako faridi - Publications
PDF Print E-mail

Mottaghitalab, M., A., Faridi, H., Darmani-Kuhi, J., France, and H., Ahmadi. 2010. Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks. Poult. Sci. 89: 1325-1331.

 

Darmani-Kuhi, H.,  F. Rezaee, A. Faridi, J. France, M. Mottaghitalab, and E. Kebreab. 2011. Application the law of diminishing return for partitioning metabolizable energy and crude protein intake between maintenance and growth in growing male and female broiler breeder pullets. J. Agric. Sci. Cam. 149: 385-394.

 

Faridi, A., M. Mottaghitalab, F. Rezaee, and J. France. 2011. Narushin-Takma Models as Flexible alternatives for describing economic traits in broiler breeder flocks. Poult. Sci. 90:507-515.

 

Faridi, A., M. Mottaghitalab, H. Darmani-Kuhi, J. France, and H. Ahmadi. 2011. Predicting Carcass Energy Content and Composition in Broilers Using the Group Method of Data Handling-Type Neural Networks. J. Agric. Sci. Cam. 149: 249-254.

 

Faridi, A., and A. Golian. 2011. The Use of Neural Network Models to Estimate Early Egg Production in Broiler Breeder Hens through Dietary Nutrient Intake. Poult. Sci. 90: 2897-2903.

 

Faridi, A., M. Mottaghitalab, and H. Ahmadi. 2012. Sensitivity analysis of an early egg production predictive model in broiler breeder based on dietary nutrient intake. J. Agric. Sci. Cam. 150: 87-93.

 

Faridi, A., A. Golian, and H. Ahmadi. 2012. Comparison of responses to dietary protein and lysine in broiler chicks reared before and after 2000 via neural network models. J. Agric. Sci. Cam. 150: 775-786.
 
 
Faridi, A., N. Sakomura, A. Golian, and S. M. Marcato. 2012. Predicting body and carcass characteristics of two broiler chicken strains using support vector regression and neural network models. Poult. Sci. 91:3286-3294.
 
 
Faridi, A., A. Golian., and J. France. 2012. Evaluating the egg production behavior of broiler breeder hens in response to dietary nutrient intake during 31 to 60 weeks of age through neural network models.Can. J. Anim. Sci. 92:473-481.
 
 
Faridi, A., J. France, and A. Golian. 2013. Neural network models for predicting early egg weight in broiler breeder hens. J.Appl. Poult. Res. 22:1-8.
 
 

Faridi, A., A. Golian, J. France, and A. Heravi Mousavi. 2013. Study of Broiler Chicken Responses to Dietary Protein and Lysine Using Neural Network and Response Surface Models. Br. Poult. Sci. 54: 524-530. 

 

Faridi, A., A. Golian, M. Mottaghitalab, S. Lopez, J. France. 2013. Predicting the metabolizable energy content of corn for ducks: a comparison of support vector regression with other methods. Spanish J. Agri. Sci. 11:1036-1043.

 

Faridi, A., A. Golian, J. France, and A. Heravi Mousavi. 2014.Evaluation of broiler chicks responses to protein, methionine and tryptophan using neural network models. J. Appl. Anim. Res. 42:327-332.

 

Faridi, A., D. Murawska, A. Golian, M. Mottaghitalab, S. Lopez, and J. France. 2014. Alternative growth functions for predicting body, varcass, and breast weight in ducks: Lomolino equation and Extreme value function. Poult. Sci. 93:1031-1042.   

 

Faridi, A., A. Golian, J. France, and A. Heravi Mousavi. 2014.Bootstrapped Neural Network Models for Analyzing the Responses of Broiler Chicks to Dietary Protein and Branched Chain Amino Acids. Can. J. Anim. Sci. 94:79-85.

 

Faridi, A., S. Lopez, H. Ammar, K. S. Salwa, A. Golian, J. H. M. Thornley, J. France. 2014. Some novel growth functions and their application with reference to growth in the ostrich. J. Anim. Sci. (In press).

 

 

Last Updated on Saturday, 14 February 2015 10:53